# **Appendix 4.1**

### **AIR QUALITY MONITORING**

11.

)

#### **MONITORING SCOPE**

The following monitoring was undertaken using passive diffusion tubes:

- Nitrogen Dioxide (NO<sub>2</sub>) at 22 locations
- Nitrogen Oxides (NO<sub>X</sub>) at 4 locations
- Ammonia (NH<sub>3</sub>) at 4 locations
- Sulphur Dioxide (SO<sub>2</sub>) at 3 locations

The locations are shown in Figure 1, and additional details in Table 1.

Single tubes were deployed at each location with the exception of:

- NK22, which is co-located with the automatic monitor in Immingham and where triplicate NO<sub>2</sub> and NO<sub>x</sub> tubes were deployed for local bias adjustment factor generation, and
- Iocations NK1 and NK12, where triplicate NO2 tubes were used.

The diffusion tubes were exposed for monthly intervals over a period of 3 months as follows:

- Month/Period 1 24//09/2019 to 23/10/2019
- Month/Period 2 23/10/2019 to 21/11/2019
- Month/Period 3 21/11/2019 to 19/12/2019

The NO<sub>2</sub> (20% TEA in water), NO<sub>X</sub> and SO<sub>2</sub> diffusion tubes were provided by Gradko Laboratories. The ammonia samplers (ALPHA samplers) were provided by Centre of Ecology and Hydrology (CEH).

#### DATA PROCESSING

Following the methodology prescribed by Defra<sup>1</sup>, the raw data for NO<sub>2</sub> and NO<sub>X</sub> have been bias adjusted, using local bias adjustment factors from the survey period, 0.85 for NO<sub>2</sub> and 1.1 for NO<sub>X</sub> as NO<sub>2</sub>. Details of the bias adjustment factor calculation are provided in **Figure 2** and **Figure 3** for NO<sub>2</sub> and NO<sub>X</sub> respectively.

The  $NO_2$  and  $NO_X$  data were also annualised using data from Defra's Automatic Urban and Rural monitoring network sites<sup>2</sup> within 50 miles of the site. The monitoring locations selected were Hull Freetown, Nottingham Centre, Sheffield Tinsley and Immingham (all urban background sites). The factors were applied to the monitoring period average concentrations to produce an annual mean concentration for 2019.

Concentrations of  $NH_3$  and  $SO_2$  are given as simple period averages.

<sup>&</sup>lt;sup>1</sup> DEFRA (2016) Local Air Quality Management Technical Guidance (TG16)

<sup>&</sup>lt;sup>2</sup> DEFRA (2020) Interactive Monitoring Networks Map available at https://uk-air.defra.gov.uk/interactive-map as accessed on 20/01/2020

#### RESULTS

The monitoring results are provided in **Tables 2 – 5** below.

#### Nitrogen Dioxide

NO<sub>2</sub> concentrations are highly unlikely to exceed the annual mean limit value established in the Air Quality Standards Regulations 2010<sup>3</sup> (or numerically identical UK air quality objective).

The maximum estimated 2019 annual mean NO<sub>2</sub> concentration was 27.0µg/m<sup>3</sup>, at location NK07 adjacent to the Port of Immingham storage areas; the second highest was 24.5µg/m<sup>3</sup> at NK20 on Chase Hill Road. The lowest concentration of 8.7 µg/m<sup>3</sup> was recorded at location NK04, alongside the Humber Estuary to the north-west of the port.

#### **Nitrogen Oxides**

The maximum 2019 annual average concentration of  $24.8\mu g/m^3 NOx$  (as NO<sub>2</sub>) was measured at location NK14, just off Haven Road. The lowest period average concentration of  $16.2\mu g/m^3 NOx$  was measured at location NK12, to the south of the North Killingholme Haven Pits.

These concentrations are within the critical level for  $NO_X$ , set for the protection of vegetation. ( $30\mu g/m^3$ ). The critical level is the concentration of pollutant above which direct adverse effects may occur.

#### Ammonia

The highest period average concentration of  $1\mu g/m^3 NH_3$  was measured at location NK14 which also had the highest concentration of  $NO_X$ . The period mean concentrations do not exceed the annual mean critical level of  $3\mu g/m^3 NH_3$ , applicable where lichens and bryophytes are not a key part of the ecosystem integrity<sup>4</sup>, established by Convention on Long Range Transboundary Air Pollution<sup>5</sup>. The lowest period average concentration for  $NH_3$  ( $0.6\mu g/m^3$ ) was measured at location NK10 near the Humber Estuary, to the south of the main port activities.

#### Sulphur Dioxide

The highest period average concentration for SO<sub>2</sub> ( $4.4\mu g/m^3$ ) was measured at location NK12, to the south of North Killingholme Haven Pits; the lowest SO<sub>2</sub> concentration of  $1.6\mu g/m^3$  was measured at location NK21, on Crook Mill Road to the west of the proposed power station.

The maximum period average concentrations of  $SO_2$  are well within the annual and winter mean objective of  $20\mu g/m^3$  and, as such, it is highly unlikely that these objectives are exceeded in the area.

<sup>&</sup>lt;sup>3</sup> HMSO (2010). Air Quality Standards Regulations, Statutory Instrument 2010/1001 as amended by the Air Quality Standards (Amendment) Regulations, Statutory Instrument 2016/1184.

<sup>&</sup>lt;sup>4</sup> The project ecologists have advised that, in the study area for the air quality monitoring, lichen and bryophytes are not a key part of the ecosystem integrity

<sup>&</sup>lt;sup>5</sup> Atmospheric Pollutant Information System (2020). Critical Loads and Critical Levels available at <u>http://www.apis.ac.uk/critical-loads-and-critical-levels-guide-data-provided-apis#\_Toc279788054</u> as accessed 20/01/2020





Figure 1: Map showing air quality monitoring points established by WSP (NK01 – NK22)

#### Table 1: Details of each monitoring location

| NK01 – Roadside           | NK02 – Roadside           | NK03 – Estuary waterfront | NK04 – Estuary waterfront |
|---------------------------|---------------------------|---------------------------|---------------------------|
| $Pollutants - NO_2$       | Pollularits – $NO_2$      | $POIIUIANIS - NO_2$       | $POIIUIANIS - NO_2$       |
| Location – 513865, 419649 | Location – 513808, 420176 | Location – 514777, 422923 | Location - 515214, 422054 |
|                           |                           |                           |                           |

| NK05 – Estuary waterfront<br>Pollutants – NO2 | NK06 – Estuary waterfront<br>Pollutants – NO2 | NK07 – Estuary waterfront<br>Pollutants – NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NK08 – NK Haven Pits<br>Pollutants – NO2. NH3 |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Location – 515757, 421175                     | Location - 516224, 420581                     | Location – 516387, 420347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location – 516541, 420001                     |
|                                               |                                               | Native Base<br>Based of the Second Secon |                                               |

| NK09 – NK Haven Pits         | NK10 – NK Haven Pits                                         | NK11 – NK Haven Pits         | NK12 – NK Haven Pits                                                         |
|------------------------------|--------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|
| Pollutants – NO <sub>2</sub> | Pollutants – NO <sub>2</sub> NO <sub>X</sub> NH <sub>3</sub> | Pollutants – NO <sub>2</sub> | Pollutants – NO <sub>2</sub> NO <sub>X</sub> SO <sub>2</sub> NH <sub>3</sub> |
| Location – 516767, 419938    | Location – 517001, 419674                                    | Location – 516941, 419622    | Location – 516559, 419587                                                    |
|                              |                                                              |                              |                                                                              |



| NK13 – Estuary waterfront (North<br>shore)<br>Pollutants – NO <sub>2</sub><br>Location – 523057, 419169 | NK14 – NK Haven Pits<br>Pollutants – NO <sub>2</sub> NO <sub>X</sub> SO <sub>2</sub> NH <sub>3</sub><br>Location – 516240, 419723 | NK15 – Estuary waterfront<br>Pollutants – NO <sub>2</sub><br>Location – 517291, 419184 | NK16 – Estuary waterfront<br>Pollutants – NO <sub>2</sub><br>Location – 517738, 418529 |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                                         |                                                                                                                                   |                                                                                        |                                                                                        |



| NK17 – Estuary waterfront<br>Pollutants – NO <sub>2</sub><br>Location – 518272, 417879 | NK18 – Estuary waterfront (North<br>shore)<br>Pollutants – NO <sub>2</sub><br>Location – 522742, 419509 | NK19 – Estuary waterfront (North)<br>Pollutants – NO <sub>2</sub><br>Location – 523377, 418879 | NK20 – Roadside<br>Pollutants – NO2 SO2<br>Location – 515724, 418873 |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                        |                                                                                                         |                                                                                                | ROAD LAVOUT<br>AHEAD                                                 |

| NK21 – Roadside<br>Pollutants – NO $_2$ SO $_2$<br>Location – 513406, 418313 | NK22 - Urban Background (Co-<br>located with Immingham AURN)<br>Pollutants – NO <sub>2</sub> , NO <sub>X</sub><br>Location – 518285, 415111 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                                                                                                                                             |

| Cł     | Checking Precision and Accuracy of Triplicate Tubes |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
|--------|-----------------------------------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-----------------------|-------------------------------------|-------------------|-------------------|-------------------|---------------------------|-----------------------------|------------------------------|
|        | Diffusion Tubes Measurements                        |                        |                             |                             |                             |                    |                       |                                     |                   | Automa            | tic Method        | Data Qual                 | ity Check                   |                              |
| Period | Start Date<br>dd/mm/yyyy                            | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |                   | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 24/09/2019                                          | 23/10/2019             | 13.2                        | 13.9                        | 13.7                        | 14                 | 0.4                   | 3                                   | 0.9               |                   | 10.41             | 99.2                      | Good                        | Good                         |
| 2      | 23/10/2019                                          | 22/11/2019             | 21.4                        | 20.0                        | 20.2                        | 21                 | 0.7                   | 4                                   | 1.8               |                   | 17.5782           | 99.6                      | Good                        | Good                         |
| 3      | 22/11/2019                                          | 19/12/2019             | 19.6                        | 20.4                        | 20.1                        | 20                 | 0.4                   | 2                                   | 1.0               |                   | 18.1011           | 87.9                      | Good                        | Good                         |
| 4      |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 5      |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 6      |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 7      |                                                     |                        |                             | <u> </u>                    |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 8      |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 10     |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 11     |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 12     |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| 13     |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| lt is  | necessary to                                        | have results fo        | or at least                 | two tube                    | s in order                  | to calculate       | the precisio          | n of the measu                      | rements           |                   | Overal            | ll survey>                | Good<br>precision           | Good<br>Overall              |
| Sit    | e Name/ ID:                                         |                        |                             |                             |                             |                    | Precision             | 3 out of 3 p                        | eriods ha         | we a C'           | V smaller (       | than 20%                  | (Check avera                | ige CV & DC                  |
|        | •                                                   | 6                      | 0.5%                        | <b>C</b> .1                 |                             |                    |                       | 1                                   | 0.5%              |                   |                   |                           | from Accuracy               | calculations)                |
|        | Accuracy                                            | (with                  | 95% CON                     | ndence                      | interval)                   |                    | Accuracy              | (With                               | 95% CONT          | Idence            | interval)         | ens/                      |                             |                              |
|        | without pe                                          | rious with C           | v larger                    | than 20                     | %                           |                    | WITH ALL              | DATA                                |                   |                   |                   | - 30%<br>                 | ΙI                          | T                            |
|        | Bias calcul                                         | ated using 5           | perious                     |                             | 00)                         |                    | Blas calcu            | lated using 5                       | perious           |                   | 1.00)             | 50 25%                    |                             |                              |
|        | B                                                   | Dias IdCtor A          | 4.0%                        | 0 (U.1 - 1<br>(7%)          | .08)                        |                    |                       | Dias lactor A                       | 1.00/             | (0.7 -            | 1.08)             | B B                       | Ĭ                           | T I                          |
|        |                                                     | Blas B                 | 107                         | -170                        | +270)                       |                    |                       | BidS B                              | 10%               | (-1 70 -          | 4270)             | Tut De                    | Without CV>20%              | With SI data                 |
|        | Diffusion I                                         | ubes Mean:             | 18                          | µgm *                       |                             |                    | Diffusion             | lubes Mean:                         | 18                | µgm `             |                   | .6 -25%                   |                             |                              |
|        | Mean CV                                             | (Precision):           | 3                           |                             |                             |                    | Mean CV               | (Precision):                        | 3                 |                   |                   | oiffu                     |                             |                              |
|        | Autor                                               | matic Mean:            | 15                          | µgm <sup>-s</sup>           |                             |                    | Auto                  | matic Mean:                         | 15                | µgm <sup>-s</sup> |                   | L -50%                    | -                           |                              |
|        | Data Capt                                           | ure for period         | ds used:                    | 96%                         |                             |                    | Data Cap              | ture for perio                      | ds used:          | 96%               |                   |                           |                             |                              |
|        | Adjusted T                                          | ubes Mean:             | 15 (1                       | 3 - 19)                     | µgm <sup>-\$</sup>          |                    | Adjusted              | Tubes Mean:                         | 15 (13            | - 19)             | µgm <sup>-s</sup> |                           | Jaume Tar                   | ga, for AEA                  |
|        |                                                     |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   | Ver                       | sion 04 - Feb               | ruary 2011                   |

#### Figure 2. Bias adjustment for NO<sub>2</sub> tubes



| Cł     | Checking Precision and Accuracy of Triplicate Tubes |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
|--------|-----------------------------------------------------|------------------------|-----------------|-----------------------------|------------------------------|--------------------|-----------------------|-------------------------------------|-------------------|----------|----------------|---------------------------|-----------------------------|------------------------------|
|        | Diffusion Tubes Measurements                        |                        |                 |                             |                              |                    |                       |                                     |                   | Automat  | tic Method     | Data Quali                | ty Check                    |                              |
| Period | Start Date<br>dd/mm/yyyy                            | End Date<br>dd/mm/yyyy | Tube 1<br>µgm⁻³ | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>- s</sup> | Triplicate<br>Mean | Standard<br>Deviation | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |          | Period<br>Mean | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 24/09/2019                                          | 23/10/2019             | 16.5            | 17.2                        | 13.9                         | 16                 | 1.7                   | 11                                  | 4.3               |          | 13.1162        | 99                        | Good                        | Good                         |
| 2      | 23/10/2019                                          | 22/11/2019             | 17.6            | 17.2                        | 16.7                         | 17                 | 0.5                   | 3                                   | 1.1               |          | 21.4765        | 99                        | Good                        | Good                         |
| 3      | 22/11/2019                                          | 19/12/2019             | 19.0            | 17.9                        | 18.4                         | 18                 | 0.6                   | 3                                   | 1.4               |          | 22.2398        | 99                        | Good                        | Good                         |
| 4      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 5      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 6      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 7      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 8      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 9      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 10     |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 11     |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| 12     |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                |                           |                             |                              |
| lt is  | necessary to                                        | have results fo        | or at least     | two tube                    | s in order                   | to calculate       | the precisio          | on of the measu                     | rements           |          | Overal         | leurvov >                 | Good                        | Good                         |
|        |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          | Overa          | i Suivey>                 | precision                   | Overall                      |
| Sit    | e Name/ ID:                                         |                        |                 |                             |                              |                    | Precision             | 3 out of 3 p                        | eriods ha         | ve a C\  | / smaller (    | than 20%                  | from Accuracy               | ge UV & DU<br>celoulations)  |
|        | Ассигасу                                            | (with                  | 95% con         | fidence                     | interval                     |                    | Ассштасу              | (with                               | 95% conf          | idence   | interval       |                           | nomeccuacy                  | calculations)                |
|        | without pe                                          | riods with C           | Vlarger         | than 20                     | %                            |                    | WITH ALL              | ΠΑΤΑ                                | 00// 00//         | aenee    | interval,      | 50%                       |                             |                              |
|        | Bias calcula                                        | ated using 3           | periods         | of data                     |                              |                    | Bias calcu            | lated using 3                       | periods           | of data  |                | æ                         |                             |                              |
|        | Biao bailbail                                       | ias factor A           | 1.1             | (0.68 - 2                   | .88)                         |                    | Diao balot            | Bias factor A                       | 1.1 (             | 0.68 - 2 | .88)           | Sec. 25%                  |                             |                              |
|        | 1                                                   | Bias B                 | -9%             | (-65% -                     | 46%)                         |                    |                       | Bias B                              | -9%               | (-65% -  | 46%)           | <u>a</u> 0%               |                             |                              |
|        | Diffusion T                                         | ubos Moan              | 47              | uam-3                       |                              |                    | Diffusion             | Tuboc Moan:                         | 47                |          |                | 1                         | Without V>20%               | With 🕏 data                  |
|        | Moon CV                                             | (Drocision):           | 6               | pym                         |                              |                    | Moon Cl               | / (Drocision):                      | 6                 | pym      |                | -25%                      |                             |                              |
|        | - Wearr CV                                          | (Precision).           |                 |                             |                              |                    | Mean CV               | (Fiecision).                        | 0                 |          |                | ₩.<br>Di∰                 |                             |                              |
|        | Autor<br>Data Cant                                  | natic Mean:            | 19<br>de ueod:  | ngm *                       |                              |                    | Auto<br>Data Car      | matic Mean:                         | 19<br>de used:    | µgm *    |                |                           |                             |                              |
|        |                                                     |                        | us useu.        | 3970                        | -3                           |                    | Data Cap              |                                     | us useu.          | 39%      |                |                           |                             | 6                            |
|        | Adjusted I                                          | ubes Mean:             | 19 (1           | 2 - 49)                     | µgm -                        |                    | Adjusted              | Tubes Mean:                         | 19 (12            | - 49)    | µgm -          |                           | Jaume Targ                  | ja, for AEA                  |
| '      |                                                     |                        |                 |                             |                              |                    |                       |                                     |                   |          |                | Ver                       | sion 04 - Feb               | ruary 2011                   |

Figure 3. Bias adjustment for NO<sub>X</sub> tubes (NO<sub>X</sub> as NO<sub>2</sub>)

|                  | Rav                      | w Results (µg/           | 'm³)                        | Period<br>Average                                | Bias<br>Adjusted              | 2019<br>Annual     |
|------------------|--------------------------|--------------------------|-----------------------------|--------------------------------------------------|-------------------------------|--------------------|
| Location         | 24 Sep 19<br>– 23 Oct 19 | 23 Oct 19 –<br>21 Nov 19 | 21 Nov 19<br>– 19 Dec<br>19 | (μg/m <sup>3</sup> )<br>24 Sep 19 –<br>19 Dec 19 | Average<br>(Factor =<br>0.85) | Average<br>(μg/m³) |
| NK1a             | 14.3                     | 16.7                     |                             | 15.5                                             | 13.2                          | 14.3               |
| NK1b             | 15.1                     | 17.8                     |                             | 16.4                                             | 14.0                          | 15.1               |
| NK1c             | 15.0                     | 17.8                     |                             | 16.4                                             | 13.9                          | 15.1               |
| NK1 Average      | 14.8                     | 17.5                     |                             | 16.1                                             | 13.7                          | 14.8               |
| NK2              | 9.8                      |                          | 21.0                        | 15.4                                             | 13.0                          | 13.3               |
| NK3              | 13.1                     |                          |                             | 13.1                                             | 11.1                          | 14.0               |
| NK4              | 8.1                      |                          |                             | 8.1                                              | 6.9                           | 8.7                |
| NK5              | 16.4                     | 19.7                     | 4.8                         | 13.7                                             | 11.7                          | 11.6               |
| NK6              | 27.0                     | 25.0                     | 31.2                        | 27.7                                             | 23.6                          | 23.4               |
| NK7              | 31.9                     | 29.7                     | 34.2                        | 31.9                                             | 27.1                          | 27.0               |
| NK8              | 17.7                     | 21.8                     | 23.7                        | 21.0                                             | 17.9                          | 17.8               |
| NK9              |                          |                          | 29.2                        | 29.2                                             | 24.8                          | 21.1               |
| NK10             | 21.8                     | 20.0                     | 30.8                        | 24.1                                             | 20.5                          | 20.4               |
| NK11             |                          | 18.9                     | 21.1                        | 20.0                                             | 17.0                          | 15.3               |
| NK12a            | 19.6                     | 19.1                     | 25.6                        | 21.4                                             | 18.2                          | 18.1               |
| NK12b            | 20.0                     | 21.3                     | 27.3                        | 22.8                                             | 19.4                          | 19.3               |
| NK12c            | 18.0                     | 22.4                     | 23.5                        | 21.3                                             | 18.1                          | 18.0               |
| NK12 Average     | 19.2                     | 20.9                     | 25.5                        | 21.8                                             | 18.6                          | 18.5               |
| NK13             | 19.8                     | 19.3                     | 24.0                        | 21.0                                             | 17.8                          | 17.8               |
| NK14             | 20.3                     | 20.3                     | 23.2                        | 21.2                                             | 18.1                          | 18.0               |
| NK15             | 18.8                     | 17.6                     |                             | 18.2                                             | 15.4                          | 16.7               |
| NK16             | 0.5                      | 10.8                     | 26.3                        | 12.4                                             | 10.5                          | 10.5               |
| NK17             | 25.0                     | 22.0                     | 29.6                        | 25.5                                             | 21.7                          | 21.6               |
| NK18             | 18.0                     | 18.3                     | 24.6                        | 20.2                                             | 17.2                          | 17.1               |
| NK19             | 21.2                     | 15.2                     | 29.8                        | 22.0                                             | 18.7                          | 18.6               |
| NK20             | 25.3                     | 32.1                     | 29.6                        | 29.0                                             | 24.6                          | 24.5               |
| NK21             | 12.6                     | 10.2                     | 21.4                        | 14.7                                             | 12.5                          | 12.4               |
| NK22a            | 13.2                     | 21.4                     | 19.6                        | 18.1                                             | 15.3                          | 15.3               |
| NK22b            | 13.9                     | 20.0                     | 20.4                        | 18.1                                             | 15.4                          | 15.3               |
| NK22c            | 13.7                     | 20.2                     | 20.1                        | 18.0                                             | 15.3                          | 15.2               |
| NK22 Average     | 13.6                     | 20.6                     | 20.0                        | 18.0                                             | 15.3                          | 15.2               |
| Laboratory Blank | 0.1                      | 0.2                      | 0.0                         | 0.1                                              | 0.1                           | 0.1                |

#### Table 2 Nitrogen Dioxide Monitoring Results

|              | Rav                      | w Results (µg/           | <sup>'</sup> m <sup>3</sup> ) | Period<br>Average                                        | 2019<br>Appual |                    |  |
|--------------|--------------------------|--------------------------|-------------------------------|----------------------------------------------------------|----------------|--------------------|--|
| Location     | 24 Sep 19<br>- 23 Oct 19 | 23 Oct 19 –<br>21 Nov 19 | 21 Nov 19<br>– 19 Dec<br>19   | (μg/m <sup>3</sup> )<br>24 Sep 19 –<br>19 Dec 19<br>1.1) |                | Average<br>(µg/m³) |  |
| NK10         | 17.6                     | 12.1                     | 15.4                          | 15.0                                                     | 16.5           | 16.4               |  |
| NK12         | 17.6                     | 11.7                     | 15.3                          | 14.9                                                     | 16.3           | 16.2               |  |
| NK14         | 25.1                     | 17.9                     | 25.1                          | 22.7                                                     | 25.0           | 24.8               |  |
| NK22A        | 16.5                     | 17.6                     | 19.0                          | 17.7                                                     | 19.5           | 19.4               |  |
| NK22B        | 17.2                     | 17.2                     | 17.9                          | 17.4                                                     | 19.2           | 19.1               |  |
| NK22C        | 13.9                     | 16.7                     | 18.4                          | 16.3                                                     | 17.9           | 17.8               |  |
| NK22 Average | 15.8                     | 17.2                     | 18.5                          | 17.1                                                     | 18.9           | 18.7               |  |

#### Table 3 Nitrogen Oxides Monitoring (NO $_X$ as NO<sub>2</sub>)

| Table 4 | Ammonia Monitoring (Data | a provided were | calibrated by | CEH using 2 | 018 UK | <b>(EAP</b> |
|---------|--------------------------|-----------------|---------------|-------------|--------|-------------|
| uptake  | rate)                    |                 |               |             |        |             |

|                                                                                           | Rav                      | w Results (µg/           | ′m³)                        | Period<br>Average                   |  |  |  |  |
|-------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------|--|--|--|--|
| Location                                                                                  | 24 Sep 19<br>- 23 Oct 19 | 23 Oct 19 –<br>21 Nov 19 | 21 Nov 19<br>- 19 Dec<br>19 | (μg/m³)<br>24 Sep 19 –<br>19 Dec 19 |  |  |  |  |
| NK8                                                                                       | 0.98                     | 0.61                     | 0.76                        | 0.8                                 |  |  |  |  |
| NK10                                                                                      | 0.87                     | 0.32                     | 1.46*                       | 0.6                                 |  |  |  |  |
| NK12                                                                                      | 0.69                     | 0.33                     | 0.65                        | 0.6                                 |  |  |  |  |
| NK14                                                                                      | NK14 1.23 0.80 1.04      |                          |                             |                                     |  |  |  |  |
| *Reading discarded due to rainwater ingress into sampler. Flagged as nvalid by laboratory |                          |                          |                             |                                     |  |  |  |  |

#### Table 5 Sulphur Dioxide Monitoring

|          | Rav                      | Period<br>Average        |                             |                                     |
|----------|--------------------------|--------------------------|-----------------------------|-------------------------------------|
| Location | 24 Sep 19<br>– 23 Oct 19 | 23 Oct 19 –<br>21 Nov 19 | 21 Nov 19<br>- 19 Dec<br>19 | (μg/m²)<br>24 Sep 19 –<br>19 Dec 19 |
| NK12     | 3.18                     | 3.48                     | 6.59                        | 4.4                                 |
| NK20     | 2.60                     | 4.02                     | 3.77                        | 3.5                                 |
| NK21     | 0.61                     | 0.90                     | 3.26                        | 1.6                                 |

# **Appendix 4.2**

### **AIR QUALITY MODELLING**

### ۱۱SD

#### **MODEL DETAILS**

Modelling was undertaken using ADMS 5.2 (model version 5.2.2).

#### **MODEL INPUTS - EMISSIONS**

The emissions parameters used in the dispersion model for each scenario are shown in **Table 1**, below.

| Parameter                                  | Unit               | Scenario B<br>- Existing | Scenario B<br>- Updated | Scenario E1<br>- Existing | Scenario E1<br>- Updated |
|--------------------------------------------|--------------------|--------------------------|-------------------------|---------------------------|--------------------------|
| Height                                     | m                  |                          |                         | 80                        |                          |
| Diameter                                   | m                  |                          |                         | 6.2                       |                          |
| Exhaust Velocity                           | m/s                | 24                       | .6                      | 27                        | <i>.</i> .6              |
| Volume Flux (Actual)                       | m³/s               | 73                       | 38                      | 834                       |                          |
| Temperature                                | С                  | 87                       | <i>.</i> .6             | 96.6                      |                          |
| Normalised Flow (at reference conditions*) | Nm³/s              | 683 581                  |                         |                           | 31                       |
| NOx BAT level (at reference conditions)    | mg/Nm <sup>3</sup> | 50 30                    |                         | 50                        | 30                       |
| NOx Emission rate                          | g/s                | 34.2 20.6                |                         | 29.1                      | 14.5                     |
| SO <sub>2</sub> Emission rate              | g/s                | N                        | /A                      | 3.4                       |                          |
| PM <sub>10</sub> Emission rate             | g/s                | N                        | /Α                      | 0.                        | 9                        |

\*Reference conditions refer to NTP, 15%  $O_2,\,dry.$ 

#### **MODEL INPUTS - BUILDINGS**

The building and stack parameters used in the dispersion model for each scenario are shown in **Table 2**, below. Other than the buildings, no further topography was used in the dispersion modelling.

| Table | 2 - | Modelled | building | parameters |
|-------|-----|----------|----------|------------|
|-------|-----|----------|----------|------------|

| Building                         | Scenario | Height<br>(m) | Width<br>(m)  | Length<br>(m) | x      | Y      | Angle<br>° |
|----------------------------------|----------|---------------|---------------|---------------|--------|--------|------------|
| HRSG                             | All      | 35            | 30            | 50            | 515734 | 419636 | 65         |
| Turbine Hall                     | All      | 30            | 45            | 65            | 515753 | 419580 | 65         |
| Main Stack                       | All      | 80            | 6 (Diame      | eter)         | 515693 | 419715 | 65         |
| Hybrid Cooling Tower<br>(Bank 1) | All      | 20            | 20            | 135           | 515596 | 419727 | 65         |
| Hybrid Cooling Tower<br>(Bank 2) | All      | 20            | 20            | 135           | 515641 | 419748 | 65         |
| Administrative Building          | All      | 10            | 30            | 70            | 515850 | 419545 | 65         |
| Warehouse                        | All      | 20            | 30            | 60            | 515474 | 419865 | 65         |
| Water Treatment Plant            | All      | 8             | 25            | 55            | 515826 | 419763 | 65         |
| GIS Building                     | All      | 12            | 15            | 30            | 515709 | 419533 | 65         |
| Covered Fuel Store               | E1 only  | 35            | 110           | 250           | 515730 | 420097 | 22         |
| Biomass Storage Silo 1           | E1 only  | 45            | 25 (Diam      | neter)        | 515517 | 420040 | N/A        |
| Biomass Storage Silo 2           | E1 only  | 45            | 25 (Diam      | neter)        | 515490 | 420027 | N/A        |
| Limestone Storage Silos          | E1 only  | 45            | 25 (Diameter) |               | 515462 | 420014 | N/A        |
| Gasifier                         | E1 only  | 65            | 60            | 100           | 515616 | 419980 | 65         |

| Fuel milling / drying / preparation          | E1 only | 50 | 35       | 10    | 515527 | 420103 | 22  |
|----------------------------------------------|---------|----|----------|-------|--------|--------|-----|
| Air Separation Unit (Cold<br>Box)            | E1 only | 45 | 15       | 10    | 515561 | 419877 | 65  |
| Air Separation Unit<br>(Compressor Building) | E1 only | 20 | 20       | 65    | 515537 | 419916 | 65  |
| Oxygen Storage Tank                          | E1 only | 20 | 20 (Diam | eter) | 515548 | 419829 | N/A |
| Nitrogen Storage Tank                        | E1 only | 20 | 20 (Diam | eter) | 515580 | 419844 | N/A |
| Wastewater treatment plant                   | E1 only | 20 | 40       | 50    | 515507 | 419804 | 65  |
| Main Electrical Switching Station            | E1 only | 15 | 25       | 60    | 515515 | 419949 | 65  |

### **MODEL INPUTS - METEOROLOGY**

Table 3, below shows the dispersion model input parameters for the dispersion modelling.

Table 3 - Modelled meteorological input parameters

| Parameter                                 | Value | Commentary                                                                                                                                                                             |
|-------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface Albedo                            | 0.23  | Model default used to represent ground which is not often covered with snow                                                                                                            |
| Surface Roughness<br>(at dispersion site) | 0.5m  | Used to represent parkland/open suburbia. Sensitivity testing undertaken using 0.3m and 0.2m roughness lengths. 0.5 gave the most conservative results and was used in the assessment. |
| Priestley-Taylor<br>Parameter             | 1     | Model default – used to represent moist grassland                                                                                                                                      |
| Minimum Monin-<br>Obukhov Length          | 10m   | Used to reflect small towns                                                                                                                                                            |
| Precipitation                             | -     | Taken from Meteorological data                                                                                                                                                         |

### DATA WORKUP – PARAMETERS

The parameters (i.e. deposition velocities, NOx to NO<sub>2</sub> conversion) used in the workup of the data are presented in **Table 4**, below.

#### Table 4 – Parameters used in the workup of ecological impacts

| Parameter                                           | Unit                           | Value |      |
|-----------------------------------------------------|--------------------------------|-------|------|
| NOx to NO <sub>2</sub> conversion                   | Long Term (Annual Mean)        | N/A   | 0.7  |
|                                                     | Short Term (Daily/Hourly Mean) | N/A   | 0.35 |
| Nitrogen Deposition<br>Velocity from NOx            | Short Vegetation               | mm/s  | 1.5  |
|                                                     | Long Vegetation                | mm/s  | 3    |
| Sulphur Deposition<br>Velocity from SO <sub>2</sub> | Short Vegetation               | mm/s  | 12   |
|                                                     | Long Vegetation                | mm/s  | 24   |

### **MODEL RECEPTORS & OUTPUTS**

Cartesian grid at resolution 100m, extending 10k from site, at ground level. Habitat sites were modelled at a nominal 10m resolution for sites within 15km.

For NOx:

- Annual mean
- 99.79<sup>th</sup> percentile of hourly concentrations for NOx/NO<sub>2</sub> (18<sup>th</sup> highest hourly average concentration)

For PM<sub>10</sub>:

- Annual Mean
- 90.41<sup>st</sup> percentile of daily mean concentrations for PM<sub>10</sub> (35<sup>th</sup> highest daily average concentration)
   For SO<sub>2</sub>:
- Annual Mean
- 99.2th daily (3<sup>rd</sup> highest daily average concentration)
- 99.73th hourly (24<sup>th</sup> highest hourly average concentration)

#### WIND ROSE

**Figure 1**, below, shows the wind rose data used in the dispersion modelling for 2015 to 2019 meteorological data were taken from Humberside Airport, with cloud cover data taken from Scampton airfield. Meteorological data were input into the model as hourly sequential data.









#### Figure 1 - Windrose data from 2015 to 2019.

0 1.5 3.1 5.1 8.2 (m/s)

NORTH KILLINGHOLME POWER PROJECT Project No.: 70055743 | Our Ref No.: AQ Killingholme Limited PUBLIC WSP July 2020 C.Gen

### ۱۱SD

### SUMMARY OF RESULTS – HUMAN RECEPTORS

Tables 5 to 7, below, set out the a summary of the impacts at human receptors for NOx, SO<sub>2</sub>, and  $PM_{10}$  respectively.

| Table 5 – | Summarv     | of NO <sub>2</sub> | results a | at human | receptors. |
|-----------|-------------|--------------------|-----------|----------|------------|
|           | ••••••••••• | 0                  | loouno .  |          |            |

| Scenario and Emission Limits |                 | Annual Mean<br>AQS = 40μg/m³ |      | Hourly Mean<br>AQS = 40μg/m³ |      |
|------------------------------|-----------------|------------------------------|------|------------------------------|------|
|                              |                 | Max Process<br>Contribution  | %AQS | Max Process<br>Contribution  | %AQS |
|                              | ES Limits       | 1.24                         | 3.1% | 5.69                         | 2.8% |
| Scenario B                   | BAT Conclusions | 0.75                         | 1.9% | 4.56                         | 2.3% |
|                              | ES Limits       | 0.93                         | 2.3% | 7.21                         | 3.6% |
| Scenario E1                  | BAT Conclusions | 0.46                         | 1.2% | 5.03                         | 2.5% |

#### Table 6 – Summary of SO<sub>2</sub> results at human receptors.

| Scenario and Emission Limits |                 | Daily Mean<br>AQS = 125μg/m³ |      | Hourly Mean<br>AQS = 350µg/m³ |      |
|------------------------------|-----------------|------------------------------|------|-------------------------------|------|
|                              |                 | Max Process<br>Contribution  | %AQS | Max Process<br>Contribution   | %AQS |
| Scenario B                   | ES Limits       | -                            | -    | -                             | -    |
|                              | BAT Conclusions | -                            | -    | -                             | -    |
|                              | ES Limits       | 1.00                         | 0.8% | 2.37                          | 0.7% |
| Scenario E1                  | BAT Conclusions | 1.00                         | 0.8% | 2.37                          | 0.7% |

| Scenario and Emission Limits |                 | Annual Mean<br>AQS = 40μg/m³ |      | Daily Mean<br>AQS = 50μg/m³ |      |
|------------------------------|-----------------|------------------------------|------|-----------------------------|------|
|                              |                 | Max Process<br>Contribution  | %AQS | Max Process<br>Contribution | %AQS |
| Scenario B                   | ES Limits       | -                            | -    | -                           | -    |
|                              | BAT Conclusions | -                            | -    | -                           | -    |
|                              | ES Limits       | 0.04                         | 0.1% | 0.13                        | 0.3% |
| Scenario E1                  | BAT Conclusions | 0.04                         | 0.1% | 0.13                        | 0.3% |

#### Table 7 – Summary of PM<sub>10</sub> results at human receptors.

### SUMMARY OF RESULTS – ECOLOGICAL SITES

For ecological sites, the results are provided as a function of designated site and habitat type. **Table 8**, below, sets out the naming convention adopted for the habitat type. A summary of the ecolgical results is provided in **Tables 9-10**, below

Table 8 – Naming convention for habitat types.

| Habitat Type                            | ID  |
|-----------------------------------------|-----|
| Coastal and floodplain grazing marsh    | CFM |
| Coastal saltmarsh                       | CSM |
| Deciduous woodland                      | DWL |
| Lowland fens                            | LLF |
| Mudflats                                | MUD |
| No main habitat but additional habitats | NMH |
| Reedbeds                                | RDB |
| Saline lagoons                          | SLG |

### **NSD**

 Table 9 – Scenario B (ES limits) modelled ecological results.

| Designation | Habitat | Maximum<br>NOx PC<br>(μg/m³) | NOx PEC at<br>Maximum PC<br>(μg/m³) | Relevant Critical<br>Load (kgN/ha/yr) | Maximum N Dep<br>Impact<br>(kgN/ha/yr) | Maximum N<br>Dep PC as %<br>of Critical<br>Load | N Dep<br>PEC at<br>Maximum<br>PC (kg<br>N/ha/yr) |
|-------------|---------|------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------------|
|             | CFM     | 0.07                         | 15.21                               | 20                                    | 0.010                                  | 0.04%                                           | 23.02                                            |
|             | CSM     | 1.31                         | 41.02                               | 20                                    | 0.179                                  | 0.66%                                           | 15.68                                            |
|             | DWL     | 0.07                         | 21.17                               | 10                                    | 0.017                                  | 0.14%                                           | 22.00                                            |
|             | LLF     | 0.11                         | 34.34                               | 15                                    | 0.014                                  | 0.07%                                           | 23.02                                            |
| Humber      | MUD     | 1.33                         | 44.05                               | 20                                    | 0.180                                  | 0.67%                                           | 15.69                                            |
| Estuary     | NMH     | 1.30                         | 43.74                               | 20                                    | 0.177                                  | 0.65%                                           | 15.68                                            |
|             | RDB     | 0.04                         | 17.22                               | 20                                    | 0.005                                  | 0.02%                                           | 13.46                                            |
|             | SLG     | 0.04                         | 16.25                               | 20                                    | 0.005                                  | 0.02%                                           | 13.46                                            |
|             | CSM     | 0.07                         | 34.34                               | 20                                    | 0.009                                  | 0.04%                                           | 13.71                                            |
|             | DWL     | 0.07                         | 21.17                               | 10                                    | 0.017                                  | 0.14%                                           | 22.00                                            |



|                            | LLF | 0.03 | 34.34 | 15 | 0.004 | 0.02% | 15.19 |
|----------------------------|-----|------|-------|----|-------|-------|-------|
|                            | MUD | 0.11 | 45.56 | 20 | 0.015 | 0.06% | 15.35 |
|                            | NMH | 0.07 | 38.87 | 20 | 0.009 | 0.03% | 13.71 |
|                            | CSM | 0.56 | 14.58 | 20 | 0.024 | 0.28% | 39.50 |
| North                      | DWL | 0.53 | 14.58 | 10 | 0.012 | 1.07% | 23.39 |
| Killingholme<br>Haven Pits | NMH | 0.60 | 14.42 | 20 | 0.013 | 0.30% | 28.85 |
|                            | SLG | 0.60 | 20.37 | 20 | 0.078 | 0.30% | 15.41 |

Table 10 – Scenario B (BAT Conclusions) modelled ecological results.

| Designation | Habitat | Maximum<br>NOx PC<br>(μg/m³) | NOx PEC at<br>Maximum PC<br>(μg/m <sup>3</sup> ) | Relevant<br>Critical Load<br>(kgN/ha/yr) | Maximum N<br>Dep Impact<br>(kgN/ha/yr) | Maximum N<br>Dep PC as % of<br>Critical Load | N Dep PEC at<br>Maximum PC<br>(kg N/ha/yr) |
|-------------|---------|------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------|
|             | CFM     | 0.06                         | 15.18                                            | 20                                       | 0.006                                  | 0.03%                                        | 23.01                                      |
|             | CSM     | 1.07                         | 40.32                                            | 20                                       | 0.108                                  | 0.54%                                        | 15.61                                      |
|             | DWL     | 0.05                         | 21.14                                            | 10                                       | 0.010                                  | 0.10%                                        | 21.99                                      |
|             | LLF     | 0.09                         | 34.33                                            | 15                                       | 0.009                                  | 0.06%                                        | 23.01                                      |
| Humber      | MUD     | 1.07                         | 44.01                                            | 20                                       | 0.108                                  | 0.54%                                        | 15.61                                      |
| Estuary     | NMH     | 1.06                         | 43.70                                            | 20                                       | 0.107                                  | 0.53%                                        | 15.61                                      |
|             | RDB     | 0.03                         | 17.20                                            | 20                                       | 0.003                                  | 0.02%                                        | 13.46                                      |
|             | SLG     | 0.03                         | 16.23                                            | 20                                       | 0.003                                  | 0.02%                                        | 13.46                                      |
|             | CSM     | 0.05                         | 34.33                                            | 20                                       | 0.005                                  | 0.03%                                        | 13.70                                      |
|             | DWL     | 0.05                         | 21.14                                            | 10                                       | 0.010                                  | 0.10%                                        | 21.99                                      |



|                            | LLF | 0.02 | 34.33 | 15 | 0.002 | 0.01% | 15.19 |
|----------------------------|-----|------|-------|----|-------|-------|-------|
|                            | MUD | 0.09 | 45.51 | 20 | 0.009 | 0.05% | 15.34 |
|                            | NMH | 0.05 | 38.85 | 20 | 0.005 | 0.03% | 13.70 |
|                            | CSM | 0.47 | 14.53 | 20 | 0.014 | 0.24% | 39.49 |
| North                      | DWL | 0.44 | 14.53 | 10 | 0.007 | 0.89% | 23.39 |
| Killingholme<br>Haven Pits | NMH | 0.50 | 14.39 | 20 | 0.008 | 0.25% | 28.85 |
|                            | SLG | 0.50 | 20.06 | 20 | 0.047 | 0.25% | 15.38 |

Table 11 – Scenario E1 (ES limits) modelled ecological results.

| Designation | Habitat | Maximum<br>NOx PC<br>(μg/m³) | NOx PEC at<br>Maximum PC<br>(μg/m <sup>3</sup> ) | Relevant<br>Critical Load<br>(kgN/ha/yr) | Maximum N<br>Dep Impact<br>(kgN/ha/yr) | Maximum N<br>Dep PC as % of<br>Critical Load | N Dep PEC at<br>Maximum PC<br>(kg N/ha/yr) |
|-------------|---------|------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------|
|             | CFM     | 0.07                         | 15.20                                            | 20                                       | 0.008                                  | 0.04%                                        | 23.01                                      |
|             | CSM     | 1.31                         | 40.56                                            | 20                                       | 0.132                                  | 0.66%                                        | 15.64                                      |
|             | DWL     | 0.07                         | 21.15                                            | 10                                       | 0.014                                  | 0.14%                                        | 21.99                                      |
|             | LLF     | 0.11                         | 34.34                                            | 15                                       | 0.011                                  | 0.07%                                        | 23.02                                      |
| Humber      | MUD     | 1.33                         | 44.03                                            | 20                                       | 0.134                                  | 0.67%                                        | 15.64                                      |
| Estuary     | NMH     | 1.30                         | 43.72                                            | 20                                       | 0.131                                  | 0.65%                                        | 15.64                                      |
|             | RDB     | 0.04                         | 17.21                                            | 20                                       | 0.004                                  | 0.02%                                        | 13.46                                      |
|             | SLG     | 0.04                         | 16.24                                            | 20                                       | 0.004                                  | 0.02%                                        | 15.97                                      |
|             | CSM     | 0.07                         | 34.34                                            | 20                                       | 0.007                                  | 0.04%                                        | 13.71                                      |
|             | DWL     | 0.07                         | 21.15                                            | 10                                       | 0.014                                  | 0.14%                                        | 21.99                                      |



|                            | LLF | 0.03 | 34.34 | 15 | 0.003 | 0.02% | 15.19 |
|----------------------------|-----|------|-------|----|-------|-------|-------|
|                            | MUD | 0.11 | 45.53 | 20 | 0.012 | 0.06% | 15.34 |
|                            | NMH | 0.07 | 38.86 | 20 | 0.007 | 0.03% | 13.71 |
|                            | CSM | 0.56 | 14.56 | 20 | 0.019 | 0.28% | 39.50 |
| North                      | DWL | 0.53 | 14.56 | 10 | 0.010 | 1.07% | 23.39 |
| Killingholme<br>Haven Pits | NMH | 0.60 | 14.41 | 20 | 0.010 | 0.30% | 28.85 |
|                            | SLG | 0.60 | 20.16 | 20 | 0.057 | 0.30% | 15.39 |

#### Table 12 – Scenario E1 (BAT Conclusions) modelled ecological results.

| Designation | Habitat | Maximum<br>NOx PC<br>(μg/m³) | NOx PEC at<br>Maximum PC<br>(µg/m <sup>3</sup> ) | Relevant<br>Critical Load<br>(kgN/ha/yr) | Maximum N<br>Dep Impact<br>(kgN/ha/yr) | Maximum N<br>Dep PC as % of<br>Critical Load | N Dep PEC at<br>Maximum PC<br>(kg N/ha/yr) |
|-------------|---------|------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------|
|             | CFM     | 0.04                         | 15.17                                            | 20                                       | 0.004                                  | 0.02%                                        | 23.01                                      |
|             | CSM     | 0.65                         | 39.90                                            | 20                                       | 0.066                                  | 0.33%                                        | 15.57                                      |
|             | DWL     | 0.03                         | 21.12                                            | 10                                       | 0.007                                  | 0.07%                                        | 21.99                                      |
|             | LLF     | 0.06                         | 34.32                                            | 15                                       | 0.006                                  | 0.04%                                        | 23.01                                      |
| Humber      | MUD     | 0.66                         | 43.99                                            | 20                                       | 0.067                                  | 0.33%                                        | 15.57                                      |
| Estuary     | NMH     | 0.65                         | 43.68                                            | 20                                       | 0.065                                  | 0.33%                                        | 15.57                                      |
|             | RDB     | 0.02                         | 17.19                                            | 20                                       | 0.002                                  | 0.01%                                        | 13.46                                      |
|             | SLG     | 0.02                         | 16.22                                            | 20                                       | 0.002                                  | 0.01%                                        | 15.96                                      |
|             | CSM     | 0.04                         | 34.32                                            | 20                                       | 0.004                                  | 0.02%                                        | 13.70                                      |
|             | DWL     | 0.03                         | 21.12                                            | 10                                       | 0.007                                  | 0.07%                                        | 21.99                                      |



|                            | LLF | 0.01 | 34.32 | 15 | 0.001 | 0.01% | 15.19 |
|----------------------------|-----|------|-------|----|-------|-------|-------|
|                            | MUD | 0.06 | 45.48 | 20 | 0.006 | 0.03% | 15.34 |
|                            | NMH | 0.03 | 38.85 | 20 | 0.003 | 0.02% | 13.70 |
|                            | CSM | 0.28 | 14.51 | 20 | 0.010 | 0.14% | 39.49 |
| North                      | DWL | 0.26 | 14.51 | 10 | 0.005 | 0.53% | 23.38 |
| Killingholme<br>Haven Pits | NMH | 0.30 | 14.38 | 20 | 0.005 | 0.15% | 28.85 |
|                            | SLG | 0.30 | 19.87 | 20 | 0.028 | 0.15% | 15.36 |

| Table 13 – Scenario E1 (BA | Conclusions) modelled | l ecological results. |
|----------------------------|-----------------------|-----------------------|
|----------------------------|-----------------------|-----------------------|

| Designation | Habitat | Maximum SO₂ PC<br>(μg/m³) | SO <sub>2</sub> PEC at Maximum<br>PC (μg/m³) | Maximum SO <sub>2</sub> PC as % of Critical Level | SO₂ PEC at Maximum<br>PC as % of Critical<br>Level |
|-------------|---------|---------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------------|
|             | CFM     | 0.01                      | 2.54                                         | 0.04%                                             | 12.7%                                              |
|             | CSM     | 0.15                      | 3.71                                         | 0.77%                                             | 18.6%                                              |
|             | DWL     | 0.01                      | 3.14                                         | 0.04%                                             | 15.7%                                              |
|             | LLF     | 0.01                      | 2.53                                         | 0.07%                                             | 12.7%                                              |
| Humber      | MUD     | 0.16                      | 3.72                                         | 0.78%                                             | 18.6%                                              |
| Estuary     | NMH     | 0.15                      | 3.71                                         | 0.76%                                             | 18.6%                                              |
|             | RDB     | 0.00                      | 1.85                                         | 0.02%                                             | 9.3%                                               |
|             | SLG     | 0.00                      | 2.79                                         | 0.02%                                             | 14.0%                                              |
|             | CSM     | 0.01                      | 3.14                                         | 0.04%                                             | 15.7%                                              |
|             | DWL     | 0.01                      | 3.14                                         | 0.04%                                             | 15.7%                                              |

|                            | LLF | 0.00 | 2.15 | 0.02% | 10.8% |
|----------------------------|-----|------|------|-------|-------|
|                            | MUD | 0.01 | 5.43 | 0.07% | 27.2% |
|                            | NMH | 0.01 | 3.14 | 0.04% | 15.7% |
| North                      | CSM | 0.01 | 2.65 | 0.06% | 13.3% |
|                            | DWL | 0.01 | 2.65 | 0.06% | 13.3% |
| Killingholme<br>Haven Pits | NMH | 0.01 | 2.07 | 0.03% | 10.3% |
|                            | SLG | 0.07 | 5.05 | 0.33% | 25.2% |

Figures 2 and 3, below show the annual mean and hourly imapcts to  $NO_2$  concentrations respectively.









1 Capital Quarter Tyndall Street Cardiff CF10 4BZ

wsp.com